NHS Digital Data Release Register - reformatted

University Hospital Southampton NHS Foundation Trust

🚩 University Hospital Southampton NHS Foundation Trust received multiple files from the same dataset, in the same month, both with optouts respected and with optouts ignored. University Hospital Southampton NHS Foundation Trust may not have compared the two datasets, but the identifiers are consistent between datasets for the same recipient, and NHS Digital does not know what their recipients actually do.

Project 1 — DARS-NIC-60714-M4T1M

Opt outs honoured: No - consent provided by participants of research study (Reasonable Expectation, Consent (Reasonable Expectation))

Sensitive: Non Sensitive, and Sensitive

When: 2018/06 — 2019/09.

Repeats: One-Off, Ongoing

Legal basis: Health and Social Care Act 2012 – s261(2)(c)

Categories: Identifiable

Datasets:

  • Hospital Episode Statistics Admitted Patient Care
  • Hospital Episode Statistics Critical Care
  • MRIS - Flagging Current Status Report
  • MRIS - Cause of Death Report

Objectives:

Emergency bowel surgery (laparotomy) is a common major emergency surgical procedure, performed to treat life threatening conditions caused by cancer, infections or previous surgery. Over 30,000 people in England & Wales undergo this surgery annually at a cost of over £650m. Outcomes from emergency bowel surgery are poor; 14% of patients aged over 50 die within a month of surgery, rising to 20% within three months. The National Emergency Laparotomy Audit (NELA) is hosted by the Royal College of Anaesthetists (RCoA) and is part of the National Clinical Audit and Patient Outcomes Programme (NCAPOP), overseen by the Healthcare Quality Improvement Partnership (HQIP). NELA was commissioned following evidence of a high incidence of death, and a wide variation in the provision of care and mortality, for patients undergoing emergency laparotomy in hospitals across England, Wales and Scotland. NELA is an audit which looks at the improvement of the quality of care for patients undergoing emergency laparotomy (~30,000/yr within the audit) through the provision of high quality comparative data from all providers of emergency laparotomy surgery. FLO-ELA are using NELA to identify the 100 hospitals which have been invited to participate in FLO-ELA (~50% of the total NELA group). Patients who are undergoing the procedures at those hospitals will then be invited to consent to the FLO-ELA trial. Through this consent, patients agree that NELA will share pseudonymised data on aspects of their care while in hospital with the FLO-ELA trial, to allow the trial to describe the clinical characteristics and trial-related care of its participants. This is clearly described in the FLO-ELA consent materials and FLO-ELA data flow diagram and is based on an established data sharing agreement between HQIP/RCoA and FLO-ELA. The audit and the trial are two separate pieces of research which have a clear link. FLO-ELA (FLuid Optimisation in Emergency LAparotomy) is a large randomised clinical trial proposal funded by the National Institute for Health Research Health Technology Assessment (HTA) stream. It aims to determine whether a discrete medical intervention (perioperative cardiac output-guided haemodynamic therapy) reduces deaths after emergency laparotomy when compared with usual care. Although this intervention may be beneficial for patients undergoing planned major surgery, it has not yet been tested in patients undergoing emergency laparotomy. The FLO-ELA trial is being funded by the NIHR HTA Efficient Study Design stream, for trials able to give robust research output at greater pace and scale and/or lower cost than conventional trial designs. By linking this trial to NELA - recruiting a subset of patients eligible for inclusion in NELA, utilising the existing NELA network of hospitals and the NELA webtool and dataset for trial participant data (with ONS/HES follow up) - The study have a trial proposal which will be large enough (~8000 patients) to give a definitive answer on whether this treatment is effective, in a timely and cost-effective fashion. This represents a unique opportunity to generate practice-changing research in a challenging patient group, with the potential to save hundreds of lives every year. Trial objectives: 1. To establish whether the use of minimally invasive cardiac output monitoring to guide protocolised administration of intra-venous fluid (goal-directed haemodynamic therapy, GDHT), for patients aged 50 and over undergoing emergency laparotomy will reduce mortality within 90 days of randomisation, when compared with usual care. 2. To determine whether GDHT reduces mortality one year after randomisation, and is cost-effective. Primary outcome measure • Mortality within 90 days of randomisation Secondary outcome and process measures • Mortality within one year of randomisation • Duration of hospital stay (number of days from randomisation until hospital discharge) • Duration of stay in a level 2 or level 3 critical care bed within the primary hospital admission • Hospital readmission as an inpatient (overnight stay) within 90 days from randomisation

Yielded Benefits:

With the data received so far, a DMEC report has been produced to evaluate patient safety. The researchers have been able to validate the pre-trial assumptions on mortality rates, giving reassurance that the planned number of participants will be enough to address the main question of the trial.

Expected Benefits:

The FLO-ELA trial will provide the highest level of evidence for this intervention, informing the decision to widely implement on a national level by confirming the extent of any clinical benefit or harm, healthcare costs and cost effectiveness. A positive outcome from this trial could change practice across the developed world. NELA would expect rapid translation of this intervention into routine clinical practice within 12-24 months of trial report. This is supported in the UK by the ongoing National Emergency Laparotomy Audit and its parent organisation the Healthcare Quality Improvement Partnership. This quality improvement vehicle will maintain long term engagement and sustained interest in this area with the large number of clinicians involved in the FLO-ELA trial and the wider clinical community after trial completion. Further, the study will provide specific reports on the findings of the FLO-ELA trial for healthcare policy makers. Through the support of the advisory group, findings will be disseminated appropriately to NHS England and devolved nations, NHS trusts and other stakeholder groups. The research study will advise on the implications of findings and optimal implementation. As a definitive pragmatic effectiveness trial, with an intervention delivered by clinicians in a large number of NHS sites and in a patient group highly representative of the ultimate target population, rapid and widespread uptake of the trial findings into routine practice is expected. This has the potential to rapidly change care for over 30,000 patients across the UK each year. If shown to be beneficial, this could equate to several hundred lives being saved each year. Conversely, if no benefit is found, this treatment can be discarded, allowing clinicians to focus on other areas of care for this challenging patient group.

Outputs:

Outputs from the FLO-ELA trial analysis will only include aggregated data, no individual level data received from NHS Digital will ever leave the safe haven where the analysis is taking place. The following outputs are planned: Final Report to Funder - March 2022 Final FLO-ELA Investigators Meeting - summer 2022 Peer Reviewed Publications - summer 2022 Conferences and meetings - 2022 - ongoing In accordance with current practice, appropriately pseudonymised record-level data may be shared with researchers in the future to support further studies in this area such as meta-analysis. This will be subject to the strict data sharing policy in place at the Pragmatic Clinical Trials Unit. Patient consent will be requested for such future data sharing at the time of recruitment into the trial. Appropriate approvals from NHS Digital will also be sought prior to any data sharing. Details of expected outputs: The main scientific report (aggregated / summary data only) will be sent to a high level journal such as the Lancet for their consideration first. Second choices would include the British Medical Journal, the New England Journal of Medicine, and the Journal of the American Medical Association. These are all general interest journals read by a wide range of healthcare workers worldwide. The study plan to invite all the co-investigators (from 100 hospitals) to a final FLO-ELA meeting where they will disseminate and discuss the findings. The study will also present the work at scientific meetings and congresses. For example the ‘Annual Congress of Enhanced Recovery and Perioperative Medicine’ and the ‘Evidence-Based Peri-Operative Medicine’ conferences. They will also disseminate the aggregated findings through the mainstream media and also through social media (e.g. Twitter) with the support of their patient representatives. The main target audience will be surgeons, anaesthetists and intensive care doctors but also patients and their carers. A plain English summary of the trial results and any important trial information will be presented here http://www.floela.org/ More broadly, work will be carried out with patient partners and the PCPIE group at the Royal College of Anaesthetists to plan lay-orientated dissemination of the trial results to a non-medical audience.

Processing:

The Royal College of Anesthetists (RCoA) are the principal data processors for NELA and manage the extraction of the records from the NELA IT system. The FLO-ELA team at the Pragmatic Clinical Trials Unit (PCTU), Queen Mary University London will act as data processors to integrate NELA data with HES and ONS outcomes data for patients recruited into FLO-ELA. They will perform this role under contract by the study sponsor, University Hospital Southampton NHS Foundation Trust, the trust are involved in making decisions about the outputs and what the data will be used for. The Royal College of Anaesthetists (RCoA) cannot access and is not permitted to access FLO-ELA data, including any of the data disseminated under this Agreement by NHS Digital. The Royal College of Anaesthetists role is to act as a data processor for NELA on behalf of HQIP. The request for HES data was made following consultation with the study health economist. All selected data fields are required for an accurate appraisal of resource-use and cost during the study period. Necessary data minimisation steps were undertaken in order to exclude those fields which are not necessary to answer the research questions: this included fields related to maternal, neonatal (etc.) care. Patient identifiers for participants in the FLO-ELA trial will be collected within the PCTU trial randomisation system. The FLO-ELA team will send the file of patient identifiers and the FLO-ELA ID to NHS Digital for linkage to HES and ONS fields. After linking, NHS Digital will remove all supplied identifiers, leaving only the FLO-ELA ID, Date and Cause of Death. The FLO-ELA team at Queen Mary University London will receive files from NHS Digital that contain the HES and ONS fields, as well as the FLO-ELA ID. The identifiable fields received by the FLO-ELA team are ONS Date of Death and cause of death. The full Date of Death is required to be able to calculate survival at two time points (90 day, one year). The FLO-ELA team will not use ONS Date of Death to identify any individual patients. The data received from NHS Digital will not be linked back to the identifiable NELA database. An extract of pseudonymised NELA data will be linked to the HES-ONS data via the NELA ID. The health economic analysis in the study will combine resource-use data (to estimate the cost of care) and outcomes in terms of quality-of-life to carry out a cost-effectiveness analysis. Initial resource-use during the intervention period will be obtained from routine data recorded in the NELA database. Subsequent resource-use during the follow-up period will be estimated by observing the number of hospital admissions, critical care days, accident & emergency visits and outpatient visits recorded in HES. The quality-of-life outcomes will be estimated by mapping participant characteristics to a different but similar population in a previous study called EPOCH. No quality-of-life data will be collected from patients in the FLO-ELA study, and the EPOCH dataset represents a different group of patients from another study. Therefore this mapping does not involve onward linkage of individuals’ record-level data to other datasets containing their data. The NELA data and the HES-ONS data will also be linked to a Health Economics (HE) dataset via the FLO-ELA ID. The HES dataset does not contain any identifiers. The FLO-ELA team Statisticians and Health Economists who will work on the linked dataset do not have access to the identifiable data set held by the RCoA or any identifiers held locally at hospitals. All processing of ONS data will be in line with standard ONS terms and conditions. All organisations party to this agreement must comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data). No record level data will be shared with any organisation not noted in this application only the sharing of aggregated data with small numbers suppressed in line with the HES analysis guide is permitted. The data from NHS Digital will not be used for any other purpose other than that outlined in this Agreement. Data will only be processed at QMUL no access will be provided at Southampton FT.


Project 2 — DARS-NIC-287601-K4P2V

Opt outs honoured: Yes - patient objections upheld (Section 251 NHS Act 2006)

Sensitive: Non Sensitive, and Sensitive

When: 2019/12 — 2019/12.

Repeats: One-Off

Legal basis: Health and Social Care Act 2012 – s261(7)

Categories: Identifiable

Datasets:

  • Hospital Episode Statistics Admitted Patient Care
  • Civil Registration - Deaths
  • HES:Civil Registration (Deaths) bridge

Objectives:

CHARIOT stands for the following: Is the [C]urrent T[h]reshold for Diagnosis of “[A]bnormality”, including Non ST Elevation Myocardial Infarction, using [R]aised H[i]ghly Sensitive Tr[o]ponin Appropriate for a Hospi[t]al Population? A blood test called troponin forms a key part of the diagnosis of a heart attack (myocardial infarction). Troponin refers to a group of proteins that help regulate the contractions of the heart and skeletal muscles. High troponin levels can indicate a problem with the heart. The heart releases troponin into the blood following an injury, such as a heart attack. The upper limit of normal for this test is determined by the manufacturer of the test, based on the troponin levels in healthy individuals, generally aged between 18-40. Recently assays have been developed that provide a higher degree of sensitivity and as such allow rapid exclusion of a heart attack within a few hours. This benefit does however raise another issue; elevated levels of high sensitivity troponin are now frequently seen in patients who have not suffered a heart attack. In the absence of clinical features of a heart attack an elevated high-sensitivity troponin leaves clinicians uncertain as to how to interpret this result and whether it should result in changes to patient care. The original CHARIOT study, which has been published in the BMJ (BMJ 2019;364:l729), collected high-sensitivity troponin results from 20,000 consecutive patients who had blood samples requested by clinicians at University Hospital Southampton (UHS). The aim was to provide a description of the distribution of high-sensitivity troponin in a hospital population. The CHARIOT study has highlighted the potential flaws in the use of the high-sensitivity troponin assay in front line clinical practice: the concern that the test is used to diagnose Type 1 myocardial infarction and yet; a) the cut off provided by the manufacturer of the test as the upper limit of normal is not appropriate, so that 1 in 20 patients at a large UK hospital have a high sensitivity troponin above this level even when there is no clinical suspicion of a myocardial infarction; b) the cause of the elevated high-sensitivity troponin is likely to be due to myocardial injury, rather than a type 1 myocardial infarction in most cases. Having established these important observations in CHARIOT, the Coronary Research Group (CRG) at UHS now wish to pursue a secondary question from this 20,000 patient population, which the CRG is in an unique position to do: release of troponin in these patients probably indicates myocardial injury and does this act as a surrogate for worse clinical outcome? Recent data in other patient cohorts including diabetics (Circulation 2017; 135:1911-1921) and chronic lung disease (BMC Pulm Med. 2016; 16:164) have suggested high-sensitivity troponin levels are associated with cardiovascular risk. This study (CHARIOT - one year follow up) will aim to assess whether there is an association between high-sensitivity troponin levels and one year outcomes (mortality status, cause of death and admission diagnoses). This work is of significant public interest for three reasons. Firstly, as demonstrated by the CHARIOT study, this issue is frequently encountered in clinical practice; secondly - clinicians are often unsure whether these results are of clinical significance. Finally, if this study does demonstrate an association between high-sensitivity troponin levels and outcomes then further studies will result to assess whether any medical interventions, (particularly proven cardiovascular therapies), could alter the prognosis in this group. This study therefore has significant potential implications for the healthcare of a large population of patients both in the UK and internationally. As such the study meets the standards set out in section Article 6 (1)(E) of the General Data Protection Regulation for processing these data: "processing is necessary for the performance of a task carried out in the public interest or in the exercise of official authority vested in the controller". Furthermore for these reasons it also meets the expectations set out for processing data set out in Article 9(2)(J) of the General Data Protection Regulation: "processing is necessary for archiving purposes in the public interest, scientific or historical research purposes or statistical purposes in accordance with Article 89(1) based on Union or Member State law which shall be proportionate to the aim pursued, respect the essence of the right to data protection and provide for suitable and specific measures to safeguard the fundamental rights and the interests of the data subject". The key ethical question raised by this study is whether it is appropriate to process these data without consent. As already discussed the potential improvements that this study could offer to patient care both in the UK and internationally mean that this study is undoubtedly in the public interest. Furthermore this study will have minimal risk to the patients included in the study and their personal data will be kept pseudonymised. It is therefore clear that the study has an ethical mandate. This opinion is also held by both the Research Ethics Committee and the Confidentiality Advisory Group, as demonstrated by their support for this study. The data requested will help the research team to assess whether there is an association between high-sensitivity troponin levels and clinical outcomes. Specifically mortality status will allow the team to assess whether there is a link between high-sensitivity troponin levels and mortality. The cause of death is important because it would seem more likely that high-sensitivity troponin levels will predict cardiovascular mortality rather than all cause mortality. Without the cause of death the research team will be unable to evaluate this. Whilst mortality is a key aspect of health, future cardiovascular events are also of key importance . Therefore the discharge diagnoses from hospital admissions will allow the team to assess whether there is an association between high-sensitivity troponin levels and cardiovascular events. The data returned from NHS Digital will need to be in a pseudonymised form (just with the unique study identifier that the CRG at UHS will send) to allow the CRG at UHS to link these data with the high-sensitivity troponin levels. If data were provided on an aggregate level it would not be possible to fully assess the association between high-sensitivity troponin levels and clinical/mortality outcomes. One year outcomes should provide the research teams with a clear picture of the relationship between high-sensitivity troponin levels and outcomes. This is the minimum time frame required to answer the primary objectives of this study. Is is likely that some patients will have moved or have been admitted to hospital whilst away from their permanent residence. Therefore the data will not be restricted to one particular geographical area, such as Southampton. It is not possible to achieve the aims of the study without processing these data. Furthermore the research team have specifically asked for the minimum data required to complete the objectives of this study, any less and it would not be possible to robustly evaluate the association between high-sensitivity troponin levels and clinical outcomes. The data required from the HES dataset relates to Diagnosis codes only. The results from these analyses will result in improvements in the way clinicians interpret high-sensitivity troponin levels but may also precipitate further studies to assess whether any medical interventions could alter the outcomes in at risk groups identified by this study. This study is a follow on from the CHARIOT study which recruited 20,000 consecutive patients (both in- and out-patients) in whom a biochemistry sample was performed at UHS between the 29th June 2017 and 24th August 2017. This request forms part of a separate study resulting from the original CHARIOT study. There are no additional phases. This particular study will be referred to as CHARIOT - one year follow up. UHS will act as the sole Data Controller. UHS and the Keele Cardiovascular Research Group (KCRG -part of the University of Keele (UoK)) will act as the data processors. The KCRG was set up as a specialist center for the analysis of large cardiovascular data sets. As such the KCRG were involved in the analysis of the original CHARIOT study and it would be remiss not to continue to use their expertise to ensure that the data supplied by NHS Digital provide robust answers to the objectives of this study. The spreadsheet that will be sent to KCRG will contain the age (not date of birth) and gender of the patients in the cohort, alongside clinical information from NHS Digital, but no other identifiable data will be shared. KCRG will act under instructions from UHS - therefore reinforcing that UHS are sole data controller for this project. The original CHARIOT study was funded by an unrestricted research grant from Beckman Coulter (BC). BC had no input in the study specifics. This sub-study requires no input from industry and specifically BC have no ongoing role. There are no other organisations involved. There are no funders/commissioners involved.

Expected Benefits:

The expected measurable benefit of the data access and the study will be an important contribution to the optimal use and interpretation of high sensitivity troponin assays in front line clinical practice. Use of high sensitivity troponin assays in front line practice is flawed in two ways. Firstly, there is widespread misunderstanding about the meaning of a raised high-sensitivity troponin; such a result is often incorrectly labelled as implying type 1 myocardial infarction, due to low awareness of myocardial injury. Secondly the upper limit of normal supplied by the manufacturer of the blood test is based upon a predominantly healthy population and UHS have shown in CHARIOT that this is not the 99th centile for 20,000 consecutive hospital patients. Thus, whilst the current application of high-sensitivity troponin is largely flawed, data are accumulating that the assay (determining the quality) may have a clinically valuable alternative role as a biomarker of cardiovascular risk (Lancet 2018: 391; 10138: 2398). The proposed study represents a unique opportunity to assess whether the high-sensitivity troponin levels in the 20,000 consecutive patients are indeed associated with mortality and future (HES derived) events. If so, the "never means nothing" hypothesis of high-sensitivity troponin should lead UHS to change the way that clinicians interpret the assay in front line hospital practice. It would no longer be an assay mistakenly used to "rule in" type 1 myocardial infarction, but rather a biomarker for patient risk prognosis. The dissemination of this data is in the public interests because it has the potential to change the way that large groups of patients are managed. The data are likely to result in changes in the way that high-sensitivity troponins are requested and also interpreted by clinicians. Furthermore as already discussed it is likely that these data will precipitate further study to assess whether cardiovascular interventions could change the outcomes in this group. This study will have wide implications, because, as demonstrated by the original CHARIOT study these patients are frequently seen in clinical practice. The benefit will be achieved by potential changes in clinical practice. It is expected that the dissemination of these data will occur within six months of NHS Digital releasing that data and then changes in clinical care will follow afterwards

Outputs:

There will be a multi-faceted approach to the dissemination of the results of this study. Firstly the results will be presented at respected medical conferences. Secondly the data will be published in respected peer review journals. These two activities will ensure that the key messages are available to the scientific community. The results will also be published (in a non-scientific format) on the UHS web pages. Like CHARIOT this study is also likely to generate significant press coverage which UHS will engage with to ensure that the results are widely disseminated to the general public. Finally the promotion of the published article through the use of social media will also widen the audience. The results of this study are likely to be of immediate clinical relevance to clinicians by providing them with a better understanding of the clinical significance of the high-sensitivity troponin levels. Furthermore, if these data demonstrate that the high-sensitivity troponin levels are associated with cardiovascular outcomes then this is likely to stimulate further research to evaluate whether medical interventions can alter the outcomes seen in this group of patients. Whilst the aggregate results will be published to allow clinicians, scientists and the public to understand the implications of raised high-sensitivity troponin levels, the data themselves will not be released and will be stored and then destroyed following the standards set out by NHS Digital. The patients included in the original CHARIOT study have not been directly informed of their participation in the study (apart from via the privacy notice) and as such UHS will not be sending any outputs directly to the patients included. The study therefore has no immediate direct benefit to the patients involved and is purely designed to guide future care of similar patients. However once the study has completed UHS plan to ensure that the results are available widely both to the medical community and the public. The outputs to the medical community will take the form of peer reviewed publications and presentations at medical conferences. The main output to the public will be through the updates and explanation of the results in the trusts patient facing research website. Furthermore, as was the case with the original CHARIOT study, it is likely that there will be some interest from the national press and so this will also provide a specific way of providing the outputs to the cohort involved and the general public. All outputs will contain only aggregate level data with small numbers suppressed in line with the HES analysis guide.

Processing:

Only substantive employees of University Hospital Southampton NHS Foundation Trust and the Keele Cardiovascular Research Group (who have been trained in data protection and confidentiality) will have access to the data and only for the purposes described in this document. The data will be stored on secured computers within each of the listed data processing organisations. University Hospital Southampton NHS Foundation Trust (UHS) will provide NHS Digital with the following identifiers of the cohort for the linkage to the data requested - NHS number, - date of birth, - gender - Study ID. NHS digital will return clinical outcomes from the HES data and corresponding mortality data (date of death, cause of death and admission diagnoses) with each unique study ID. The CRG at UHS will then use the Study ID to link the data provided by NHS digital to the high-sensitivity troponin levels. Once this is complete the data will be sent to the KCRG to allow both the CRG and KCRG to undertake further statistical analysis. Re-identification of these patients will not be possible because the database will only contain the unique study identifier and gender of the patient - no other patient identifiers will be included. The patient identifiers are kept in a separate database. KCRG have no access to these other patient identifiers. No contact will be made with the patients selected. The data will only be used for this study. The NHS Digital data is crucial to provide the most accurate information on the outcome of patients recruited to this study and will form the basis of a robust research study that will be submitted to peer reviewed journals. The data from this study will not be used for commercial purposes, not provided in record level form to any other third party not mentioned in this agreement, and not used for direct marketing or commercial purposes. All outputs will be aggregated with small numbers suppressed in line with the HES analysis guide.


Project 3 — DARS-NIC-148284-T2GPT

Opt outs honoured: Y, N, Yes - patient objections upheld (Section 251 NHS Act 2006)

Sensitive: Sensitive, and Non Sensitive

When: 2016/04 (or before) — 2019/10.

Repeats: Ongoing, One-Off

Legal basis: Section 251 approval is in place for the flow of identifiable data, Health and Social Care Act 2012 – s261(7)

Categories: Identifiable

Datasets:

  • MRIS - Cause of Death Report
  • MRIS - Cohort Event Notification Report
  • MRIS - Scottish NHS / Registration
  • MRIS - Members and Postings Report

Objectives:

The Hertfordshire Birth Cohort explores the relationship between intrauterine experience (as summarised by birthweight) and eventual cause of death. It also includes data on weight at one year, allowing the effect of growth in infancy to be studied. In addition, a subst of individulas have attended clinics to characterise their health and are still being followed-up with their consent.

Yielded Benefits:

Early findings from Hertfordshire provided the catalyst for a new field of research: the Developmental Origins of Adult Disease. An international learned society (https://dohadsoc.org/) has developed to support it, and the earliest paper based on Hertfordshire data (Barker DJP, Osmond C, Winter PD, Margetts BM, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2:577-80) has nearly 2000 citations to date. Over 260 papers have been published in peer-reviewed journals. Since 2004 HCS has focused on musculoskeletal disease. Key findings are summarised below: Growth in utero and in infancy are determinants of adult bone mass, bone geometry, microarchitecture, strength and fracture risk Adult bone mass is related to circulating GH and cortisol concentration; SNPs within candidate genes; ischaemic heart disease and risk of diabetes Fracture risk is predicted by measures of bone density and architecture other than dual-energy X-ray absorptiometry Markers of bone turnover, but not volumetric bone density, are associated with knee osteoarthritis Genetic factors and vitamin D status influence the incidence and progression of knee osteoarthritis Functional limitation associated with hand OA is driven by pain rather than by comorbidity Adult bone mass and grip strength are related to quality of life Bone health is directly influenced by muscle function Early life factors are related to body composition in late adulthood Muscle size and strength are related to growth in early life Sarcopenia and frailty are prevalent conditions in older men and women, newly recognised in clinical practice Sarcopenia in later life is associated with altered muscle morphology HCS data have contributed to the development of normative guidelines on grip strength Early environment influences development of autoantibodies Inflammaging is a powerful predictor of future frailty Adult anthropometry is associated with several candidate genes Birth weight and adult fat consumption interact to determine serum cholesterol levels Unhealthy lifestyles (obesity, smoking, poor diet, physical inactivity) are strongly linked to poor physical function and increased risk of hospital admission in older men and women. The data remain as relevant today as when the work begun, and the growing percentage of deaths among the wider cohort only add to their value. In addition, notification of death is crucial for individuals with whom the study is in contact: given their age, death rates are high, but having received no mortality data for over two years sometimes unknowingly the team approach a cohort member who has died. This is distressing to the bereaved relatives and to the team and could be avoided by reinstating the flow of mortality data.

Expected Benefits:

The research described is focused on accruing evidence on risk factors for disease, thus it sits at the head of a research discovery process. In time, and with consistent evidence generated from other studies on the same theme, this body of evidence may lead to the design of an intervention. For example, if the work on risk factors for hospital admission (described above) identifies a characteristic pattern of morbidity and behaviour that is associated with increased rates of admission among older people, an intervention (perhaps a combination of treatment and behaviour change) might target individuals in whom the pattern exists with the aim of reducing the need for hospitalisation which is to the detriment of the individual and places demand on the NHS. Only after an intervention study provides evidence for the effectiveness of an intervention will implementation science be used to embed the intervention within clinical practice with the involvement of all necessary care-giving stakeholders. Mortality: The wider study aims to inform a body of evidence about how intrauterine (occurring within the uterus) and early life conditions affect health, longevity and eventual cause of death. As such, it represents the first stage in a process which may eventually impact on health and social care. The process is long: early evidence of a link between birth weight and mortality was produced by this study in the 1990s. Investigation of the mechanisms underlying the link followed, using animal and then human models, and it is only now that Randomised Controlled Trials are being carried out with the aim of modifying intrauterine conditions. With sufficient evidence, an intervention in routine obstetric care could follow in the future. HES: Research using HES data has thus far addressed risk factors for hospitalisation generally, although the research is not principally service based. The aim is not to identify specific procedures, interventions and policies that will have immediate benefit for the health of older people and the care that they receive from the NHS but rather, to inform a body of evidence about likely risk factors for hospitalisation. In time, this could lead to interventions as described above. Nutrition programme: There is a very compelling case for knowing more about nutrition and health in older age. One third of older patients are categorised as being at risk of malnutrition on admission to hospital, and malnutrition is associated with poorer health outcomes and longer hospital stay. HCS is the only UK cohort that has collected dietary data in later life and offers the opportunity to define the role of nutrition as a determinant of health in later life. The MRC LEU are developing a programme that will run till 2020, using both HES and mortality data to chart the development of disease in relation to diet.

Outputs:

Over 250 publications in peer-reviewed scientific journals have resulted from the Hertfordshire Cohort Study to date; civil registration data have constituted a specific outcome in 3 of these and HES data in 4. Over the next 1-2 years the analyses proposed below will consider mortality or HES data as a specific outcome and, as explained in the processing activities, continuous notification of death will underlie many more outputs. HES data: An exploration of the risk factors for hospital admission in later life has produced 3 papers, all of which are drafted and ready for immediate submission: • Predictive factors for 30-day readmission among older people • Predictive factors for emergency admission among older people • Predictive factors for elective admission among older people Three further papers using HES data will be written: • The contribution of co-morbidity to risk of hospital admission • The contribution of obesity to risk of hospital admission • The contribution of socio-economic status to risk of hospital admission In addition to the outputs listed, which are aimed at the scientific community, material is produced for cohort members. This includes • An annual newsletter, the latest edition of which will be mailed in February 2019 • A website https://www.mrc.soton.ac.uk/herts/ • Occasional public meetings, most recently on 23/06/18 in Harpenden

Processing:

Tracing and flagging of the wider cohort (n=C37,000) was carried out by NHS Digital during the 1980s and 1990s on receipt, from the MRC unit, of patient identifiers from cohort members’ birth records (name, sex, DoB and address at birth). In return, current names, HA ciphers of residence and NHS numbers of flagged individuals were notified to the MRC, together with details of deaths that had already occurred. Incident mortality has subsequently been reported monthly by NHS Digital under this data sharing agreement. Mortality data are used for two purposes: i) To investigate the associations between conditions in early life, ageing, longevity and cause of death. ii) To avoid unnecessary contact with bereaved relatives of those who are deceased In 2011, the NHS numbers of 2997 clinic participants originally provided to the LEU by the NHS Central Register (NHSCR) were supplied to NHS Digital and an extract of HES data covering the period between the earliest baseline clinic and 31/03/2010 was received in return. HES data were cleaned and episode records collapsed to produce an admissions history for each HCS member from the date of their baseline assessment (which varied from person to person) to the universal end date in 2010. Admission histories (which could potentially be identified by date of birth in association with sex) were created through linkage to the HCS database and have been subjected to ongoing analyses using survival models in STATA (data analysis and statistical software). The HES data can be linked by the LEU with fact and date of death derived from civil registration data as well as with other study data, as explained in the following paragraph Data derived from multiple sources (birth records, home interviews, clinics, postal questionnaires, health authorities, GPs, NHS Digital and ONS) are stored in a series of databases in a dedicated secure area of the MRC LEU computer server. A unique serial number acts as the primary key and is the only common field between databases. This allows the data to be linked as necessary to investigate emerging research questions. Any emerging research questions are not permitted to go beyond any significant extension of the purpose without an amendment being submitted and agreed by NHS Digital. All organisations party to this agreement must comply with the Data Sharing Framework Contract requirements, including those regarding the use (and purposes of that use) by “Personnel” (as defined within the Data Sharing Framework Contract ie: employees, agents and contractors of the Data Recipient who may have access to that data). Data will only be processed and stored at MRC LEU and will not be available to any other individual for any other purpose. All outputs will contain only aggregate level data with small numbers suppressed in line with the HES analysis guide. Processing of NHS Digital data occurs only within the MRC LEU. The LEU is a part of the University of Southampton's Faculty of Medicine. All staff accessing the data disseminated under this agreement are substantively employed by University of Southampton but are limited to those staff based in the LEU. The LEU is located on the campus of the University Hospitals Southampton NHS Trust but is otherwise unrelated to the NHS. The applicant will not link the data further and the only data linkages are those permitted under this application.


Project 4 — DARS-NIC-10497-N0K9V

Opt outs honoured: N

Sensitive: Non Sensitive

When: 2016/04 (or before) — 2016/08.

Repeats: One-Off

Legal basis: Health and Social Care Act 2012

Categories: Anonymised - ICO code compliant

Datasets:

  • Hospital Episode Statistics Admitted Patient Care

Objectives:

The project is regarding children (<18yrs) with inflammatory bowel disease and surgery (IBD) (for IBD or an initial appendectomy) and the influence of biological agents on rates of surgery. The data will be used to test 3 null hypotheses, i.e. 1. The introduction of biological agents has not affected the rate of Gastro Intestinal (GI) surgery in children with non-infective colitis (i.e. Inflammatory Bowel Disease) 2. Appendectomy does not change the risk of subsequently developing Inflammatory Bowel disease 3. Appendectomy performed after a diagnosis of Inflammatory Bowel disease does not change the risk of requiring a bowel resection. The period of data (1997/98-2014/15) covers the time when use of Infliximab/Adalimumab use has increased, as well as allowing investigation of longitudinal trends to analyse the root causes of any systemic change in patient outcomes.

Expected Benefits:

At the present time there is minimal available evidence regarding the utility of appendicectomy in the management of inflammatory bowel disease in children (either as a preventative or treatment option). This study will provide an important step in the scientific basis for clinical management of these patients. This knowledge will be used by Paediatric surgeons and Gastroenterologists to guide the clinical management of children with Inflammatory Bowel Disease or a family history there-of. There is also great potential for a randomised controlled clinical trial on this topic (such as the ACCURE trial which is the adult equivalent trial), however the baseline population data in this area is required to ensure that this is the correct path. The data under this agreement will not be used as part of a future clinical trial without an application to the HSCIC for approval.

Outputs:

Analysed aggregated results will be shared in a peer reviewed healthcare journal in 2016/17 (specifically the Journal of Pediatric Surgery, The Archives of Disease in Childhood). The Trust expect that the results of this retrospective linkage analysis will provide the best available evidence to guide management of children with inflammatory bowel disease or a strong family history of the same. Small numbers will be supressed in line with the HES analysis guide.

Processing:

It will be investigated by looking at; Objective One • How many children undergo appendectomy per year (1997-2015)? Objective Two • How many new diagnoses of Crohns’ disease or Ulcerative Colitis (UC) or Indeterminate Colitis (IC) are made per year in children? • How many children require a surgical procedure for Crohn's, UC or IC (other than endoscopy) per year? • What is the admission rate per year for children with a diagnosis of UC. To answer these aims, the Trust will supply a list of operative codes of interest (including endoscopy which is to be excluded). Objective Three • Do children who have undergone appendectomy (for any reason) go on to have a higher or lower rate of a later diagnosis of UC. The Trust wishes to investigate whether children who undergo appendectomy, then are later diagnosed with UC are more/less likely to later require surgery (colectomy) for UC The Trust wishes to investigate patients with multiple diagnoses or operative procedure codes: 1. UC diagnosis + subsequent colectomy 2. Appendectomy code, subsequent UC diagnosis (ever) 3. Appendectomy code, subsequent UC diagnosis, and subsequent colectomy code 4. Appendectomy diagnosis, subsequent UC diagnosis, no subsequent colectomy code. 5. Appendectomy code, subsequent UC diagnosis, and subsequent hospital admission rate 6. UC diagnosis, subsequent hospital admission rate 7. UC diagnosis, later appendectomy diagnosis, and then later colectomy code 8. UC diagnosis, later appendectomy code, subsequent hospital admission rate Objective Four • How many patients present each year with IBD and how many of them attend for Infliximab/Adalimumab each year - the 2 subgroups should then be analysed for further operative codes relating to IBD surgery. Specifically the Trust will be looking at the rate of colectomy operations (removal of part or whole of large bowel to treat inflammatory bowel disease). This is usually undertaken either after failure of medicines to control the disease satisfactorily, to treat narrowing of the bowel caused by disease or rarely to treat very serious inflammatory bowel disease in an emergency. The Trust are interested in using this data to assess the rate and timing of such surgery relative to disease onset and treatment with these medicines. The Trust are able to assess the use of these medicines here as they have been allocated a high cost drug code which is recorded by HES. This data will be particularly interesting as it spans a period where it is expected that the use of these medicines has increased substantially.