NHS Digital Data Release Register - reformatted

NHS Doncaster Ccg

Project 1 — NIC-37497-DOD1Y

Opt outs honoured: Y, N

Sensitive: Sensitive

When: 2016/12 — 2017/02.

Repeats: Ongoing

Legal basis: Section 251 approval is in place for the flow of identifiable data, Health and Social Care Act 2012

Categories: Identifiable, Anonymised - ICO code compliant

Datasets:

  • SUS (Accident & Emergency, Inpatient and Outpatient data)
  • Local Provider Data - Acute, Ambulance, Community, Demand for Service, Diagnostic Services, Emergency Care, Experience Quality and Outcomes, Mental Health, Other not elsewhere classified, Population Data, Primary Care
  • Mental Health Minimum Data Set
  • Mental Health and Learning Disabilities Data Set
  • Mental Health Services Data Set
  • Improving Access to Psychological Therapies Data Set
  • Children and Young People's Health Services Data Set

Benefits:

Invoice Validation 1. Financial validation of activity 2. CCG Budget control 3. Commissioning and performance management 4. Meeting commissioning objectives without compromising patient confidentiality 5. The avoidance of misappropriation of public funds to ensure the ongoing delivery of patient care Risk Stratification Risk stratification promotes improved case management in primary care and will lead to the following benefits being realised: 1. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these. 2. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care. 3. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required. 4. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework. 5. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics. All of the above lead to improved patient experience through more effective commissioning of services. Pseudonymised – SUS and Local Flows 1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways. a. Analysis to support full business cases. b. Develop business models. c. Monitor In year projects. 2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types. 3. Health economic modelling using: a. Analysis on provider performance against 18 weeks wait targets. b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients. c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway. d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC). 4. Commissioning cycle support for grouping and re-costing previous activity. 5. Enables monitoring of: a. CCG outcome indicators. b. Non-financial validation of activity. c. Successful delivery of integrated care within the CCG. d. Checking frequent or multiple attendances to improve early intervention and avoid admissions. e. Case management. f. Care service planning. g. Commissioning and performance management. h. Understanding the care of patients in nursing homes. Feedback to NHS service providers on data quality and non-financial validation of contract activity at an aggregate and individual record level – only on data initially provided by the service providers. Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS 1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, Integrated care and pathways. a. Analysis to support full business cases. b. Develop business models. c. Monitor In year projects. 2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types. 3. Health economic modelling using: a. Analysis on provider performance against 18 weeks wait targets. b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients. c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway. 4. Commissioning cycle support for grouping and re-costing previous activity. 5. Enables monitoring of: a. CCG outcome indicators. b. Non-financial validation of activity. c. Successful delivery of integrated care within the CCG. d. Checking frequent or multiple attendances to improve early intervention and avoid admissions. e. Case management. f. Care service planning. g. Commissioning and performance management. h. Understanding the care of patients in nursing homes. 6. Feedback to NHS service providers on data quality and non-financial validation of contract activity at an aggregate and individual record level – only on data initially provided by the service providers.

Outputs:

Invoice Validation 1. Addressing poor data quality issues 2. Production of reports for business intelligence 3. Budget reporting 4. Validation of invoices for non-contracted events Risk Stratification 1. As part of the risk stratification processing activity detailed above, GPs have access to the risk stratification tool which highlights patients for whom the GP is responsible and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 2. Output from the risk stratification tool will provide aggregate reporting of number and percentage of population found to be at risk. 3. Record level output will be available for commissioners pseudonymised at patient level 4. GP Practices will be able to view the risk scores for individual patients with the ability to display the underlying SUS data for the individual patients when it is required for direct care purposes by someone who has a legitimate relationship with the patient. Pseudonymised – SUS and Local Flows 1. Commissioner reporting: a. Summary by provider view - plan & actuals year to date (YTD). b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD. c. Summary by provider view - activity & finance variance by POD. d. Planned care by provider view - activity & finance plan & actuals YTD. e. Planned care by POD view - activity plan & actuals YTD. f. Provider reporting. g. Statutory returns. h. Statutory returns - monthly activity return. i. Statutory returns - quarterly activity return. j. Delayed discharges. k. Quality & performance referral to treatment reporting. 2. Readmissions analysis. 3. Production of aggregate reports for CCG Business Intelligence. 4. Production of project / programme level dashboards. 5. Monitoring of acute / community / mental health quality matrix. 6. Clinical coding reviews / audits. 7. Budget reporting down to individual GP Practice level. 8. GP Practice level dashboard reports include high flyers. Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS 1. Commissioner reporting: a. Summary by provider view - plan & actuals year to date (YTD). b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD. c. Summary by provider view - activity & finance variance by POD. d. Planned care by provider view - activity & finance plan & actuals YTD. e. Planned care by POD view - activity plan & actuals YTD. f. Provider reporting. g. Statutory returns. h. Statutory returns - monthly activity return. i. Statutory returns - quarterly activity return. j. Delayed discharges. k. Quality & performance referral to treatment reporting. 2. Readmissions analysis. 3. Production of aggregate reports for CCG Business Intelligence. 4. Production of project / programme level dashboards. 5. Monitoring of mental health quality matrix. 6. Clinical coding reviews / audits. 7. Budget reporting down to individual GP Practice level. 8. GP Practice level dashboard reports include high flyers.

Processing:

Yorkshire DSCRO will apply Type 2 objections (from 14th October 2016 onwards) before any identifiable data leaves the DSCRO. Invoice Validation 1. SUS Data is obtained from the SUS Repository to Yorkshire DSCRO 2. Yorkshire DSCRO pushes a one-way data flow of SUS data into the Controlled Environment for Finance (CEfF) located in the CCG. 3. The CEfF conduct the following processing activities for invoice validation purposes: a. Checking the individual is registered to the Clinical Commissioning Group (CCG) by using the derived commissioner field in SUS and associated with an invoice from the national SUS data flow to validate the corresponding record in the backing data flow b. Once the backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by the HSCIC to confirm the payments are: i. In line with Payment by Results tariffs ii. Are in relation to a patient registered with the CCG GP or resident within the CCG area. iii. The health care provided should be paid by the CCG in line with CCG guidance.  4. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved Risk Stratification 1. Identifiable SUS data is obtained from the SUS Repository to Yorkshire Data Services for Commissioners Regional Office (DSCRO). 2. Data quality management and standardisation of data is completed by Yorkshire DSCRO and the data identifiable at the level of NHS number is transferred securely to South East CSU, who hold the SUS data within the secure Data Centre on N3. 3. As part of the risk stratification processing activity, GPs have access to the risk stratification tool within the data processor, which highlights patients with whom the GP has a legitimate relationship and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 4. South East CSU who host the risk stratification system that holds SUS data is limited to those administrative staff with authorised user accounts used for identification and authentication. 5. Once South East CSU has completed the processing, the CCG can access the online system via a secure N3 connection to access the data pseudonymised at patient level. Pseudonymised – SUS and Local Flows 1. Yorkshire Data Services for Commissioners Regional Office (DSCRO) obtains a flow of SUS identifiable data for the CCG from the SUS Repository. Yorkshire DSCRO also obtains identifiable local provider data for the CCG directly from Providers. 2. Data quality management and pseudonymisation of data is completed by the DSCRO and the pseudonymised data is then passed securely to North of England CSU for the addition of derived fields, linkage of data sets and analysis. Allowed linkage is between SUS data sets and local flows 3. North of England CSU then pass the processed, pseudonymised and linked data to the CCG. The CCG analyse the data to see patient journeys for pathways or service design, re-design and de-commissioning. 4. Aggregation of required data for CCG management use will be completed by the CSU or the CCG as instructed by the CCG. 5. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression in line with the HES analysis guide can be shared where contractual arrangements are in place. Pseudonymised – Mental Health, MSDS, IAPT, CYPHS and DIDS 1. Yorkshire Data Services for Commissioners Regional Office (DSCRO) obtains a flow of data identifiable at the level of NHS number for Mental Health (MHSDS, MHMDS, MHLDDS), Maternity (MSDS), Improving Access to Psychological Therapies (IAPT), Child and Young People’s Health (CYPHS) and Diagnostic Imaging (DIDS) for commissioning purposes. 2. Data quality management and pseudonymisation of data is completed by Yorkshire DSCRO and the pseudonymised data is then passed securely to North of England CSU for the addition of derived fields and analysis. 3. North of England CSU then pass the processed, pseudonymised data to the CCG. 4. The CCG analyses the data to see patient journeys for pathway or service design, re-design and de-commissioning 5. Aggregation of required data for CCG management use will be completed by the CSU or the CCG as instructed by the CCG 6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared where contractual arrangements are in place.

Objectives:

Invoice Validation As an approved Controlled Environment for Finance (CEfF), the CCG receives SUS data identifiable at the level of NHS number according to S.251 CAG 7-07(a) and (b)/2013. The data is required for the purpose of invoice validation. The NHS number is only used to confirm the accuracy of backing-data sets and will not be shared outside of the CEfF. Risk Stratification To use SUS data identifiable at the level of NHS number according to S.251 CAG 7-04(a) (and Primary Care Data) for the purpose of Risk Stratification. Risk Stratification provides a forecast of future demand by identifying high risk patients. This enables commissioners to initiate proactive management plans for patients that are potentially high service users. Risk Stratification enables GPs to better target intervention in Primary Care Pseudonymised – SUS and Local Flows To use pseudonymised data to provide intelligence to support commissioning of health services. The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets. The CCG commissions services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers. Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS To use pseudonymised data for the following datasets to provide intelligence to support commissioning of health services : - Mental Health Minimum Data Set (MHMDS) - Mental Health Learning Disability Data Set (MHLDDS) - Mental Health Services Data Set (MHSDS) - Maternity Services Data Set (MSDS) - Improving Access to Psychological Therapy (IAPT) - Child and Young People Health Service (CYPHS) - Diagnostic Imaging Data Set (DIDS) The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets. No record level data will be linked other than as specifically detailed within this application/agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from the NHS Digita; will not be national data, but only that data relating to the specific locality of interest of the applicant.


Project 2 — NIC-86861-K1L1N

Opt outs honoured: N, Y

Sensitive: Sensitive

When: 2017/03 — 2018/02.

Repeats: Ongoing

Legal basis: Health and Social Care Act 2012, Section 251 approval is in place for the flow of identifiable data

Categories: Anonymised - ICO code compliant, Identifiable

Datasets:

  • Children and Young People's Health Services Data Set
  • Improving Access to Psychological Therapies Data Set
  • Local Provider Data - Acute
  • Local Provider Data - Ambulance
  • Local Provider Data - Community
  • Local Provider Data - Demand for Service
  • Local Provider Data - Diagnostic Services
  • Local Provider Data - Emergency Care
  • Local Provider Data - Experience Quality and Outcomes
  • Local Provider Data - Mental Health
  • Local Provider Data - Other not elsewhere classified
  • Local Provider Data - Population Data
  • Local Provider Data - Primary Care
  • Mental Health and Learning Disabilities Data Set
  • Mental Health Minimum Data Set
  • Mental Health Services Data Set
  • SUS Accident & Emergency data
  • SUS Admitted Patient Care data
  • SUS Outpatient data
  • Maternity Services Dataset
  • SUS data (Accident & Emergency, Admitted Patient Care & Outpatient)

Benefits:

Invoice Validation 1. Financial validation of activity 2. CCG Budget control 3. Commissioning and performance management 4. Meeting commissioning objectives without compromising patient confidentiality 5. The avoidance of misappropriation of public funds to ensure the ongoing delivery of patient care Risk Stratification Risk stratification promotes improved case management in primary care and will lead to the following benefits being realised: 1. Improved planning by better understanding patient flows through the healthcare system, thus allowing commissioners to design appropriate pathways to improve patient flow and allowing commissioners to identify priorities and identify plans to address these. 2. Improved quality of services through reduced emergency readmissions, especially avoidable emergency admissions. This is achieved through mapping of frequent users of emergency services and early intervention of appropriate care. 3. Improved access to services by identifying which services may be in demand but have poor access, and from this identify areas where improvement is required. 4. Potentially reduced premature mortality by more targeted intervention in primary care, which supports the commissioner to meets its requirement to reduce premature mortality in line with the CCG Outcome Framework. 5. Better understanding of the health of and the variations in health outcomes within the population to help understand local population characteristics. All of the above lead to improved patient experience through more effective commissioning of services. Pseudonymised – SUS and Local Flows 1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, integrated care and pathways. a. Analysis to support full business cases. b. Develop business models. c. Monitor In year projects. 2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types. 3. Health economic modelling using: a. Analysis on provider performance against 18 weeks wait targets. b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients. c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway. d. Analysis to understand emergency care and linking A&E and Emergency Urgent Care Flows (EUCC). 4. Commissioning cycle support for grouping and re-costing previous activity. 5. Enables monitoring of: a. CCG outcome indicators. b. Non-financial validation of activity. c. Successful delivery of integrated care within the CCG. d. Checking frequent or multiple attendances to improve early intervention and avoid admissions. e. Case management. f. Care service planning. g. Commissioning and performance management. h. Understanding the care of patients in nursing homes. Feedback to NHS service providers on data quality and non-financial validation of contract activity at an aggregate and individual record level – only on data initially provided by the service providers. Commissioning (Pseudonymised) – SUS Data Processor 3 - PI Health and Care Ltd 1. Improved performance against national Better Care Fund metrics 2. Reduction in A&E attendances (especially for elderly persons) 3. Reduction in emergency hospital admissions (especially for elderly persons) 4. Accurate evaluation of local Better Care Fund schemes 5. Accurate evaluation of system transformation of Intermediate Care 6. Improved experience of service users 7. Improved health outcomes 8. Improved social care outcomes 9. Improved productivity thorough streamlining and integration of services. Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS 1. Supporting Quality Innovation Productivity and Prevention (QIPP) to review demand management, Integrated care and pathways. a. Analysis to support full business cases. b. Develop business models. c. Monitor In year projects. 2. Supporting Joint Strategic Needs Assessment (JSNA) for specific disease types. 3. Health economic modelling using: a. Analysis on provider performance against 18 weeks wait targets. b. Learning from and predicting likely patient pathways for certain conditions, in order to influence early interventions and other treatments for patients. c. Analysis of outcome measures for differential treatments, accounting for the full patient pathway. 4. Commissioning cycle support for grouping and re-costing previous activity. 5. Enables monitoring of: a. CCG outcome indicators. b. Non-financial validation of activity. c. Successful delivery of integrated care within the CCG. d. Checking frequent or multiple attendances to improve early intervention and avoid admissions. e. Case management. f. Care service planning. g. Commissioning and performance management. h. Understanding the care of patients in nursing homes. 6. Feedback to NHS service providers on data quality and non-financial validation of contract activity at an aggregate and individual record level – only on data initially provided by the service providers.

Outputs:

Invoice Validation 1. Addressing poor data quality issues 2. Production of reports for business intelligence 3. Budget reporting 4. Validation of invoices for non-contracted events Risk Stratification 1. As part of the risk stratification processing activity detailed above, GPs have access to the risk stratification tool which highlights patients for whom the GP is responsible and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 2. Output from the risk stratification tool will provide aggregate reporting of number and percentage of population found to be at risk. 3. Record level output will be available for commissioners pseudonymised at patient level 4. GP Practices will be able to view the risk scores for individual patients with the ability to display the underlying SUS data for the individual patients when it is required for direct care purposes by someone who has a legitimate relationship with the patient. Pseudonymised – SUS and Local Flows 1. Commissioner reporting: a. Summary by provider view - plan & actuals year to date (YTD). b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD. c. Summary by provider view - activity & finance variance by POD. d. Planned care by provider view - activity & finance plan & actuals YTD. e. Planned care by POD view - activity plan & actuals YTD. f. Provider reporting. g. Statutory returns. h. Statutory returns - monthly activity return. i. Statutory returns - quarterly activity return. j. Delayed discharges. k. Quality & performance referral to treatment reporting. 2. Readmissions analysis. 3. Production of aggregate reports for CCG Business Intelligence. 4. Production of project / programme level dashboards. 5. Monitoring of acute / community / mental health quality matrix. 6. Clinical coding reviews / audits. 7. Budget reporting down to individual GP Practice level. 8. GP Practice level dashboard reports include high flyers. Commissioning (Pseudonymised) – SUS Data Processor 3 - PI Health and Care Ltd Reports, analyses and dashboards to support the integration of health and social care including: 1. Falls 2. Better Care Fund national metrics 3. Better Care Fund local schemes 4. Intermediate Care Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS 1. Commissioner reporting: a. Summary by provider view - plan & actuals year to date (YTD). b. Summary by Patient Outcome Data (POD) view - plan & actuals YTD. c. Summary by provider view - activity & finance variance by POD. d. Planned care by provider view - activity & finance plan & actuals YTD. e. Planned care by POD view - activity plan & actuals YTD. f. Provider reporting. g. Statutory returns. h. Statutory returns - monthly activity return. i. Statutory returns - quarterly activity return. j. Delayed discharges. k. Quality & performance referral to treatment reporting. 2. Readmissions analysis. 3. Production of aggregate reports for CCG Business Intelligence. 4. Production of project / programme level dashboards. 5. Monitoring of mental health quality matrix. 6. Clinical coding reviews / audits. 7. Budget reporting down to individual GP Practice level. 8. GP Practice level dashboard reports include high flyers.

Processing:

DSCRO will apply Type 2 objections before any identifiable data leaves the DSCRO. The CCG and any Data Processor will only have access to records of its own CCG. Access is limited to substantive employees with authorised user accounts used for identification and authentication. Invoice Validation 1. SUS Data is obtained from the SUS Repository to Yorkshire DSCRO 2. Yorkshire DSCRO pushes a one-way data flow of SUS data into the Controlled Environment for Finance (CEfF) located in the CCG. 3. The CEfF conduct the following processing activities for invoice validation purposes: a. Checking the individual is registered to the Clinical Commissioning Group (CCG) by using the derived commissioner field in SUS and associated with an invoice from the national SUS data flow to validate the corresponding record in the backing data flow b. Once the backing information is received, this will be checked against national NHS and local commissioning policies as well as being checked against system access and reports provided by the HSCIC to confirm the payments are: i. In line with Payment by Results tariffs ii. Are in relation to a patient registered with the CCG GP or resident within the CCG area. iii. The health care provided should be paid by the CCG in line with CCG guidance.  4. The CCG are notified that the invoice has been validated and can be paid. Any discrepancies or non-validated invoices are investigated and resolved Risk Stratification 1. Identifiable SUS data is obtained from the SUS Repository to Yorkshire Data Services for Commissioners Regional Office (DSCRO). 2. Data quality management and standardisation of data is completed by Yorkshire DSCRO and the data identifiable at the level of NHS number is transferred securely to South East CSU, who hold the SUS data within the secure Data Centre on N3. 3. As part of the risk stratification processing activity, GPs have access to the risk stratification tool within the data processor, which highlights patients with whom the GP has a legitimate relationship and have been classed as at risk. The only identifier available to GPs is the NHS numbers of their own patients. Any further identification of the patients will be completed by the GP on their own systems. 4. South East CSU who host the risk stratification system that holds SUS data is limited to those administrative staff with authorised user accounts used for identification and authentication. 5. Once South East CSU has completed the processing, the CCG can access the online system via a secure N3 connection to access the data pseudonymised at patient level. Pseudonymised – SUS and Local Flows 1. Yorkshire Data Services for Commissioners Regional Office (DSCRO) obtains a flow of SUS identifiable data for the CCG from the SUS Repository. Yorkshire DSCRO also obtains identifiable local provider data for the CCG directly from Providers. 2. Data quality management and pseudonymisation of data is completed by the DSCRO and the pseudonymised data is then passed securely to North of England CSU for the addition of derived fields, linkage of data sets and analysis. Allowed linkage is between SUS data sets and local flows 3. North of England CSU then pass the processed, pseudonymised and linked data to the CCG. The CCG analyse the data to see patient journeys for pathways or service design, re-design and de-commissioning. 4. Aggregation of required data for CCG management use will be completed by the CSU or the CCG as instructed by the CCG. 5. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression in line with the HES analysis guide can be shared where contractual arrangements are in place. Commissioning (Pseudonymised) – SUS Data Processor 3 - PI Health and Care Ltd 1. Yorkshire Data Services for Commissioners Regional Office (DSCRO) receive a flow of identifiable SUS data for Doncaster from SUS. 2. Data quality management of data is completed by the DSCRO. The SUS data is then pseudonymised using University of Nottingham open pseudonymiser tool - a standalone windows desktop application which creates a digest of one or more columns of a CSV file, using a shared key (SALT file) controlled by Yorkshire Data Services for Commissioners Regional Office 3. The completed pseudonymised file is then passed to PI Limited (PI Care and Health) via secure FTP. 4. Data quality management of social care data is completed by Doncaster Council. The social care data is then pseudonymised using University of Nottingham open pseudonymiser tool. Pseudonymised Social Care Data will be sent to PI Limited (PI Care and Health) direct from Doncaster Council via secure FTP. 5. The pseudonymisation key cannot be used to re-identify data as the tool does not allow for this to happen, it only allows for one way pseudonymisation. The pseudonymisation tool will not be received by PI Limited (PI Care and Health) from either the DSCRO or Doncaster CCG. Pseudonymisation that allows data to be matched is dependent on having the correct key. 6. PI Limited (PI Care and Health) then link the data using the common pseudo link, which is undertaken within a controlled environment by a named member of staff, who then produce online reports using HealthTrak data analysis tool to provide Doncaster CCG a with a range of high level commissioning intelligence based on integrated pathways of care in Doncaster. Access to these reports is based on user access controls, as follows: - Access to the commissioning intelligence at pseudonymised level is accessible by only 2 named members of staff in the CCG (based on a super user access licence for HealthTrak) - Access to aggregate commissioning intelligence (anonymised) is available to no more than 3 additional users across the CCG (standard user licence) - External aggregated reports only with small number suppression can be shared. Access to the HealthTrak system, both on a super user and standard user approach is governed via respective organisation employee code of practice, data protection policies and information governance protocols. Additionally, super users conform to a specific information access agreement which mitigates the risk of how the pseudonymised data can be handled and used. Pseudonymised – Mental Health, MSDS, IAPT, CYPHS and DIDS 1. Yorkshire Data Services for Commissioners Regional Office (DSCRO) obtains a flow of data identifiable at the level of NHS number for Mental Health (MHSDS, MHMDS, MHLDDS), Maternity (MSDS), Improving Access to Psychological Therapies (IAPT), Child and Young People’s Health (CYPHS) and Diagnostic Imaging (DIDS) for commissioning purposes. 2. Data quality management and pseudonymisation of data is completed by Yorkshire DSCRO and the pseudonymised data is then passed securely to North of England CSU for the addition of derived fields and analysis. 3. North of England CSU then pass the processed, pseudonymised data to the CCG. 4. The CCG analyses the data to see patient journeys for pathway or service design, re-design and de-commissioning 5. Aggregation of required data for CCG management use will be completed by the CSU or the CCG as instructed by the CCG 6. Patient level data will not be shared outside of the CCG and will only be shared within the CCG on a need to know basis, as per the purposes stipulated within the Data Sharing Agreement. External aggregated reports only with small number suppression can be shared.

Objectives:

Invoice Validation As an approved Controlled Environment for Finance (CEfF), the CCG receives SUS data identifiable at the level of NHS number according to S.251 CAG 7-07(a) and (b)/2013. The data is required for the purpose of invoice validation. The NHS number is only used to confirm the accuracy of backing-data sets and will not be shared outside of the CEfF. Risk Stratification To use SUS data identifiable at the level of NHS number according to S.251 CAG 7-04(a) (and Primary Care Data) for the purpose of Risk Stratification. Risk Stratification provides a forecast of future demand by identifying high risk patients. This enables commissioners to initiate proactive management plans for patients that are potentially high service users. Risk Stratification enables GPs to better target intervention in Primary Care Pseudonymised – SUS and Local Flows - Commissioning To use pseudonymised data to provide intelligence to support commissioning of health services. The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets. The CCG commissions services from a range of providers covering a wide array of services. Each of the data flow categories requested supports the commissioned activity of one or more providers. Pseudonymised – Mental Health, Maternity, IAPT, CYPHS and DIDS - Commissioning To use pseudonymised data for the following datasets to provide intelligence to support commissioning of health services : - Mental Health Minimum Data Set (MHMDS) - Mental Health Learning Disability Data Set (MHLDDS) - Mental Health Services Data Set (MHSDS) - Maternity Services Data Set (MSDS) - Improving Access to Psychological Therapy (IAPT) - Child and Young People Health Service (CYPHS) - Diagnostic Imaging Data Set (DIDS) The pseudonymised data is required to ensure that analysis of health care provision can be completed to support the needs of the health profile of the population within the CCG area based on the full analysis of multiple pseudonymised datasets. Pseudonymised – SUS - Commissioning PI Health and Care Ltd receive pseudonymised SUS data from the DSCRO and pseudonymised Social Care Data from Doncaster Council. PI Health and Care Ltd link and process the data in order for the CCG to provide a range of commissioning intelligence that is linked to local partnership priorities and to support the approach to measuring activity, outcome and financial impact of local Better Care Fund schemes and Sustainability and Transformation Plan. Data is a vital asset, both for the provision of services and for the efficient management of services and resources. It is therefore essential that the data the CCG hold is intelligently analysed and leveraged to inform strategic commissioning decisions, assist with the evaluation of project outcomes and to enable a culture of shared decision making across the care system. PI Health and Care Ltd will produce online reports using HealthTrak data analysis tool to provide Doncaster CCG with a range of high level commissioning intelligence based on integrated pathways of care in Doncaster. Access to these reports is based on user access controls, as follows: *PI Care and Health is a product of the company PI Limited. PI Limited also known as PI Benchmark. The company registration number is 1728605. No record level data will be linked other than as specifically detailed within this application/agreement. Data will only be shared with those parties listed and will only be used for the purposes laid out in the application/agreement. The data to be released from the NHS Digita; will not be national data, but only that data relating to the specific locality of interest of the applicant.